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Probability density of the determinant of a random
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CEA/Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex, France
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Abstract. The probability density function for the determinant of an × n random Hermitian
matrix taken from the Gaussian unitary ensemble is calculated. It is found to be a MeijerG-
function or a linear combination of two MeijerG-functions, depending on the parity ofn. The
integer moments of this probability density are also given.

1. Introduction and results

Three ensembles of random matrices have been studied extensively [1]. These are the
ensembles of matricesA defined by the probability density∝ exp(− trA2) of the matrix
elements. The matrixA is real symmetric for the Gaussian orthogonal ensemble, it is
complex Hermitian for the Gaussian unitary ensemble and it is quaternion self-dual for the
Gaussian symplectic ensemble. The question concerning the distribution of the determinant
was asked only once by Wigner [2], who gave the mean value of the logarithm of then×n
determinant [δjk + εjk] in the limit n → ∞ with εjk (εjk = εkj , if real andεjk = ε∗kj , if
complex) of order 1/n. For a random matrix taken from the Gaussian unitary ensemble we
shall calculate the probability density of its determinant. The same question concerning the
other two ensembles (orthogonal and symplectic) remains open.

Our method consists of calculating explicitly, in section 2 the Mellin transforms of the
even and odd parts of the probability densitygn(y), equation (3.1), of the determinant
y = x1x2 . . . xn where x1, . . . , xn are the eigenvalues of the random matrix. For this
calculation we apply a method used recently [3] to compute the expectation value of any
function of eigenvalues of the form

∏n
j=1 φ(xj ). We then use the inverse Mellin transform

in section 3. Our main results for positive integersn are as follows. They have a different
form accordingly asn is odd or even, and for clarity we present them separately.

g2m+1(y) = N2m+1G
2m+1,0
0,2m+1(y

2|0, 1, 1, 2, 2, . . . , m,m) (1.1)

g2m(y) = N2m[G2m,0
0,2m(y

2|0, 1, 1, 2, 2, . . . , m− 1, m− 1, m)

+(−1)m sign(y)G2m,0
0,2m(y

2| 12, 1
2,

3
2,

3
2, . . . , m− 1

2, m− 1
2)] (1.2)

N2m+1 := 2m(2m+1)π−(m+1/2)
m∏
j=0

j !

/ 2m∏
j=m

j ! (1.3)
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N2m := 2m(2m−1)π−m
m−1∏
j=0

j !

/ 2m−1∏
j=m

j !. (1.4)

HereGn,0
0,n is a MeijerG-function [4].

For y = 0, one obtains in section 4,

g2m+1(0) = 2m(2m+1)π−(m+1/2)
m∏
j=0

j !3

/(
m!2

2m∏
j=m

j !

)
(1.5)

g2m(0) = 2m(2m−1)π−m
m−1∏
j=0

j !3

/ 2m−1∏
j=m−1

j ! (1.6)

g′2m+1(0) = 0 (1.7)

g′2m(0) = (−1)m ×∞. (1.8)

In the vicinity of y = 0, one has the expansion ofgn(y) as

g1(y) = 1√
π

[1− y2+O(y4)] (1.9)

g2(y) = 2

π
[1+ 2y ln |y| + 2γy + 2y2 ln |y| + (2γ − 1)y2+O(y3 ln |y|)] (1.10)

g2m+1(y) = g2m+1(0)

[
1− 2y2

(m− 1)!2
(ln2 |y| + αm ln |y| + βm)+O(y4 ln4 |y|)

]
(1.11)

g2m(y) = g2m(0)

{
1− (−1)m

2y

(m− 1)!

[
ln |y| + γ −

m−1∑
j=1

ψ(j)

]

− 2y2

(m− 1)!(m− 2)!
(ln2 |y| + α′m ln |y| + β ′m)+O(y3 ln3 |y|)

}
(1.12)

where

αm = 3γ − 1− 2
m−1∑
j=1

ψ(j) (1.13)

α′m = 3γ − 1− ψ(m− 1)− 2
m−2∑
j=1

ψ(j) (1.14)

βm = 1

4

[
α2
m + 1+ π

2

2
+ 2

m−1∑
j=1

ψ ′(j)
]

(1.15)

β ′m =
1

4

[
α′2m + 1+ π

2

2
+ ψ ′(m− 1)+ 2

m−2∑
j=1

ψ ′(j)
]
. (1.16)

In these equations,ψ(z) := 0′(z)/0(z) is the psi function [5] andψ ′ is its derivative,
γ = −ψ(1) ≈ 0.5772 is the Euler constant andψ(j) andψ ′(j) for j 6 0 are interpreted
to be zero.

For large|y|, the asymptotic expressions forgn(y) are derived in section 5.

g2m+1(y) = 22m(m+1)[π(2m+ 1)]−1/2

( m∏
j=0

j !

/ 2m∏
j=m

j !

)
e−(2m+1)|y|2/(2m+1) |y|2m2/(2m+1)

×
[

1+ m
2(m+ 1)2

6(2m+ 1)
|y|−2/(2m+1) +O(|y|−4/(2m+1))

]
|y| � 1 (1.17)
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Figure 1. Graphs of the functionsgn(y) for n = 1, 2, 3 and 4.

g2m(y) = 22m2−3
(m
π

)1/2
( m−1∏
j=0

j !

/ 2m−1∏
j=m

j !

)
e−2m|y|1/m |y|m−1−1/(2m)[1+O(|y|−1/m)] (1.18)

if eitherm is odd andy � 1, orm is even andy � −1

g2m(y) = 22m2
(πm)−1/2

( m−1∏
j=0

j !

/ 2m−1∏
j=m

j !

)
e−2m|y|1/m |y|m−1+1/(2m)

×
[

1+ 4m4− 2m2+ 1

48m
|y|−1/m +O(|y|−2/m)

]
(1.19)

if eitherm is even andy � 1, orm is odd andy � −1.
The particular casesn = 1, 2, 3 and 4 are studied in appendix A.1 and the corresponding

functionsgn(y) are plotted in figure 1.
The moments of the probability densitygn(y) for q = 1, 2, . . .

M(n, q) :=
∫ ∞
−∞

gn(y)y
q dy (1.20)

are deduced in section 6

M(2m+ 1, 2p + 1) = 0 (1.21)

M(2m+ 1, 2p) = 0(p + 1
2)

0( 1
2)

m∏
j=1

[
0(p + j + 1

2)

0(j + 1
2)

]2

(1.22)

M(2m, 2p + 1) = (−1)m
0( 1

2)

0(m+ 1
2)

m−1∏
j=0

[
0(p + j + 3

2)

0(j + 1
2)

]2

(1.23)

M(2m, 2p) = 0(p +m+ 1
2)0(

1
2)

0(p + 1
2)0(m+ 1

2)

m−1∏
j=0

[
0(p + j + 1

2)

0(j + 1
2)

]2

. (1.24)

In appendix A.3 we make some remarks concerning the probability density of the
determinant of a matrix taken from the Gaussian symplectic and Gaussian orthogonal
ensembles, in appendix A.4 concerning complex matrices and in appendix A.5 concerning
quaternion real matrices.
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2. Calculation of Mellin transforms

For p Hermitian n × n matrices coupled in a chain we recently used [3] a method
of computing the average of a function of the form

∏p

µ=1

∏n
k=1 φµ(xµk), where xµk,

k = 1, . . . , n, are the eigenvalues of theµth matrix in the chain. We tookφµ(x) to
be 1− χµ(x), whereχµ is the characteristic function of the intervalIµ and obtained the
probability that the intervalIµ does not contain any eigenvalue of theµth matrix in the
chain. We now apply the same method to compute the Mellin transforms of the even and
odd parts

g±n (y) := 1
2[gn(y)± gn(−y)] (2.1)

of the probability densitygn(y) of the determinant of one matrix. The probability density of
the eigenvaluesx := {x1, x2, . . . , xn} of a random matrix taken from the Gaussian unitary
ensemble forn = 1, 2, . . . is [1]

F(x) := Cn exp

(
−

n∑
j=1

x2
j

)
12(x) (2.2)

1(x) :=


1 n = 1∏
16j<k6n

(xk − xj ) n = 2, 3, . . . (2.3)

Cn := 2n(n−1)/2π−n/2
/ n∏

j=1

j !. (2.4)

Recall that a polynomial is called monic if the coefficient of its highest power is one. We
write 1(x) as a polynomial alternant,

12(x) = (det[xi−1
j ])2 = det[Pi−1(xj )] det[Qi−1(xj )]i,j=1,...,n (2.5)

wherePi(x) andQi(x) are any monic polynomials of degreei. Expanding the determinants
one has

12(x) =
∑
(i)

∑
(j)

σ (i)σ (j)Pi1(x1) . . . Pin(xn)Qj1(x1) . . .Qjn(xn) (2.6)

whereσ(i) is the sign of the permutation(i) := (0,...,n−1
i1,...,in

)
, the sum(i) is over all then!

permutations(i), and similarly for the permutations(j).
If 8(x) =∏n

j=1 φ(xj ), then the average value of8(x) is

〈8(x)〉 :=
∫ ∞
−∞

. . .

∫ ∞
−∞

F(x)8(x) dx1 . . . dxn

= Cn
∑
(i)

∑
(j)

σ (i)σ (j)

n∏
k=1

∫ ∞
−∞

Pik (xk)Qjk (xk)e
−x2

k φ(xk) dxk

= Cn
∑
(i)

∑
(j)

σ (i)σ (j)8i1,j1 . . . 8in,jn

= Cnn! det[8i,j ]i,j=0,...,n−1 (2.7)

where

8i,j :=
∫ ∞
−∞

Pi(x)Qj (x)e
−x2
φ(x) dx. (2.8)
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The determinant of the matrix isy = x1 . . . xn with a probability densitygn(y). The
Mellin transform of the even part ofgn(y) is

M+n (s) :=
∫ ∞

0
ys−1g+n (y) dy (2.9)

= 1
2

∫ ∞
−∞

. . .

∫ ∞
−∞

F(x)|x1 . . . xn|s−1 dx1 . . . dxn (2.10)

= 1
2〈|x1 . . . xn|s−1〉 (2.11)

= 1
2Cnn! det[8+i,j ]i,j=0,...,n−1 (2.12)

where withφ(x) = |x|s−1 in equation (2.8), one has

8+i,j :=
∫ ∞
−∞

Pi(x)Qj (x)e
−x2|x|s−1 dx. (2.13)

We can choosePi(x) andQi(x) as any monic polynomials of degreei. They can be chosen
to make the matrix [8+i,j ] diagonal. However, let us takePi(x) = Qi(x) = xi . Then

8+i,j :=
∫ ∞
−∞

xi+j |x|s−1e−x
2

dx Res > 0

=
{
0[(s + i + j)/2] i + j even

0 i + j odd.
(2.14)

The alternate elements of then×n determinant [8+i,j ] being zero, we can rearrange its rows
and columns so as to collect the zero elements separate from the non-zero elements. Thus

det[8+i,j ]i,j=0,...,n−1 = det[8+2i,2j ]i,j=0,...,[(n−1)/2] det[8+2i+1,2j+1]i,j=0,...,[(n−2)/2] (2.15)

where [x] denotes the largest integer less than or equal tox. It is straightforward to evaluate
the determinants [8(+)

2i,2j ] and [8+2i+1,2j+1] (cf appendix A.2)

det[8+2i,2j ]i,j=0,...,[(n−1)/2] =
[(n+1)/2]∏
j=0

[
j !0

( s
2
+ j

)]
(2.16)

det[8+2i+1,2j+1]i,j=0,...,[n/2] =
[n/2]∏
j=0

[
j !0

( s
2
+ j + 1

)]
. (2.17)

Putting in the constants, we find

M+n (s) =
1

2
Nn

n∏
j=1

0
( s

2
+ b+j

)
Res > 0 (2.18)

where

b+j := [j/2] j = 1, 2, . . . . (2.19)

Note that, from the normalization ofgn(y), one has

1=
∫ ∞
−∞

gn(y) dy = 2
∫ ∞

0
g+n (y) dy (2.20)

therefore

N−1
n =

n∏
j=1

0( 1
2 + b+j ). (2.21)
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Similarly the Mellin transform of the odd part ofgn(y) is

M−n (s) :=
∫ ∞

0
ys−1g−n (y) dy (2.22)

= 1
2

∫ ∞
−∞

. . .

∫ ∞
−∞

F(x) sign(x1 . . . xn)|x1 . . . xn|s−1 dx1 . . . dxn (2.23)

= 1
2〈sign(x1 . . . xn)|x1 . . . xn|s−1〉 (2.24)

= 1
2Cnn! det[8−i,j ]i,j=0,...,n−1 (2.25)

where withφ(x) = sign(x)|x|s−1 in equation (2.8), one has

8−i,j :=
∫ ∞
−∞

xi+j sign(x)|x|s−1e−x
2

dx Res > 0

=
{
0[(s + i + j)/2] i + j odd

0 i + j even.
(2.26)

In then× n determinant [8−i,j ], the zero and non-zero elements can again be separated and
the two resulting determinants computed. One has

det[8−i,j ] = (−1)n/2{det[8−2i,2j+1]i,j=0,...,[n/2]}2

=


(−1)n/2

n/2−1∏
j=0

[
j !0

(
s + 1

2
+ j

)]2

n even

0 n odd.

(2.27)

So that the Mellin transform of the odd part ofgn(y) is

M−n (s) =


(−1)n/2

1

2
Nn

n∏
j=1

0
( s

2
+ b−j

)
n even

0 n odd

Res > 0 (2.28)

where

b−j := [(j − 1)/2]+ 1
2 j = 1, 2, . . . . (2.29)

3. Inverse Mellin transforms

The probability densitygn(y) is defined using the Dirac delta function by

gn(y) :=
∫ ∞
−∞

. . .

∫ ∞
−∞

F(x)δ(y − x1 . . . xn) dx1 . . .dxn. (3.1)

From equation (2.2) an integration overxn gives

gn(y) = Cn
∫ ∞
−∞

. . .

∫ ∞
−∞

exp

[
−

n−1∑
j=1

x2
j −

y2

(x1 . . . xn−1)2

]
1

|x1 . . . xn−1|

×
n−1∏
j=1

(
xj − y

x1 . . . xn−1

)2 ∏
16i<j6n−1

(xi − xj )2. (3.2)

The integrand in the above equation is the product of an exponential term by a polynomial
in y, x1, . . . , xn−1 and divided by|x1 . . . xn−1|2n−1. When anyxj goes either to infinity or
to zero the integrand has a decreasing Gaussian factor. It follows that the integral (3.2) is
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convergent. Furthermore, the integrand is clearly a continuous function ofy. Therefore,
from equation (3.1) the probability densitygn(y) is a continuous bounded function for any
real y. From equation (2.1) the even and odd partsg±n (y) of gn(y) are also bounded and
continuous. Their Mellin transformsM±n (s) are analytic in the right half complexs-plane
Res > 0. Thus they are uniquely determined by the inverse Mellin transform ofM±n (s)
[6].

Looking at the tables of integral transforms [7] one finds that the Mellin transform of a
Meijer G-function is the ratio of products of gamma functions. In particular [7]∫ ∞

0
xs−1G

n,0
0,n(x|b1, . . . , bn) dx =

n∏
j=1

0(s + bj ). (3.3)

By a change ofx into y2 ands into s/2, this can be written as

2
∫ ∞

0
ys−1G

n,0
0,n(y

2|b1, . . . , bn) dy =
n∏
j=1

0
( s

2
+ bj

)
. (3.4)

Comparing this last equation with equations (2.18) and (2.28), one obtains fory > 0

g+n (y) = NnGn,0
0,n(y

2|b+1 , . . . , b+n ) (3.5)

g−n (y) =
{
(−1)n/2NnG

n,0
0,n(y

2|b−1 , . . . , b−n ) n even

0 n odd.
(3.6)

Taking into account the symmetry properties ofg±n (y), one obtains for all realy the results
announced in equations (1.1) and (1.2).

4. Computation of theG-functions and behaviour near the origin

TheG-functions have convergent series expansions which are convenient for their numerical
evaluation. By definition [4]

G
n,0
0,n(y

2|b±1 , . . . , b±n ) =
1

2iπ

∫
L
y2s

n∏
j=1

0(b±j − s) ds. (4.1)

The contourL goes from−i∞ to +i∞ so that all poles of0(b±j − s) lie to the right of
the path. It can be closed in the right half complexs-plane, so that theG-function is the
negative of the sum of residues at its poles which from equations (2.19) and (2.29) all lie
on the non-negative real axis.

Whenn = 1,G1,0
0,1(y

2|0) has simple poles atj = 0, 1, . . . with the residue(−1)j+1y2j /j !
and

G
1,0
0,1(y

2|0) = e−y
2
. (4.2)

For n = 2, one can either calculate the residues at the poles or consult the literature [8]
to find that

G
2,0
0,2(y

2|b1, b2) = 2|y|b1+b2K|b2−b1|(2|y|) (4.3)

with Kν the modified Bessel function [9]. Thus

G
2,0
0,2(y

2|0, 1) = 2|y|K1(2|y|) G
2,0
0,2(y

2| 12, 1
2) = 2|y|K0(2|y|). (4.4)

For n > 2, in the case of the{b+j }, s = 0 is a simple pole with residue−∏n
j=1(b

+
j )!;

s = 1 is a pole of order 2 or 3 according asn = 2 or n > 3; s = 2 is a pole of order
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min(n, 5); s = 3 is a pole of order min(n, 7); and so on. It is straightforward to calculate
the residue ats = j , by writing

0(k − s) = [(k − s)(k + 1− s) . . . (j − s)]−10(j + 1− s) 06 k 6 j. (4.5)

The result is a series

G
n,0
0,n(y

2|b+1 , . . . , b+n ) = 1+
∞∑
j=1

c+(n, j, ln |y|)y2j

/min(2j,n)∏
k=1

(j − b+k )! (4.6)

wherec+(n, j, ln |y|) is a polynomial of order at mostn−1 in ln |y|. Similarly, in the case
of {b−j }, s = j + 1

2 is a pole of order min(n, 2j + 2), calculation of the residue is again
straightforward, and

G
n,0
0,n(y

2|b−1 , . . . , b−n ) =
∞∑
j=0

c−(n, j, ln |y|)|y|2j+1

/min(2j,n)∏
k=1

(j + 1
2 − b−k )! (4.7)

wherec−(n, j, ln |y|) is again a polynomial of order at mostn − 1 in ln |y|. For largej ,
owing to the presence ofn factorials in the denominator, the convergence of the series (4.6)
or (4.7) is better, the largern is.

As an illustration we compute in appendix A.1 the functionsGn,0
0,n(y

2|b±1 , . . . , b±n , ) for
n = 3 andn = 4. We also give the expressions ofgn(y) for n = 1, 2, 3 and 4, and plot
their graphs in figure 1.

Near s = 0 the poles ats = 0 and s = 1 (resp. s = 1
2) are dominant for the case

{b+j } (resp. {b−j }). Using equations (1.1) and (1.2) we find the expansions (1.10)–(1.12) for
gn(y) near the origin withn = 2, 3, . . . .

5. G-functions for large values of the variable

When |x| → ∞, | argx| 6 (n+ 1)π − δ, δ > 0, we have the asymptotic expansion [10]

G
n,0
0,n(x|b±1 , . . . , b±n ) = (2π)(n−1)/2n−1/2 exp(−nx1/n)xθ

±
n [1+ c±n x−1/n +O(x−2/n)] (5.1)

where

θ±n =
1

n

( n∑
j=1

b±j −
n− 1

2

)
(5.2)

c±n =
1

2

n∑
j=1

(b±j )
2− 1

2n

( n∑
j=1

b±j

)2

− n
2− 1

24n
. (5.3)

From the expressions of theb+j , equation (2.19), one has forn odd,

θ+n =
(n− 1)2

4n
(5.4)

c+n =
(n2− 1)2

96n
. (5.5)

Settingn = 2m+ 1, one obtains the asymptotic expression (1.17).
Similarly, for n even, equations (2.19) and (2.29) give

θ±n =
n2− 2n+ 2

4n
(5.6)

c+n + c−n =
n4− 2n2+ 4

48n
(5.7)

c+n − c−n =
n

8
. (5.8)
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Settingn = 2m, one obtains the asymptotic expressions (1.18) and (1.19) according to the
value of(−1)m sign(y).

6. Integer moments ofgn(y)

The moments of the probability densitygn(y) can be expressed in terms of the Mellin
transformsM±n as follows. Forq = 0, 1, . . .

M(n, q) = [1+ (−1)q ]
∫ ∞

0
g+n (y)y

q dy + [1− (−1)q ]
∫ ∞

0
g−n (y)y

q dy

= [1+ (−1)q ]M+n (q + 1)+ [1− (−1)q ]M−n (q + 1). (6.1)

ReplacingM±n (q+1) by their expressions, equations (2.18), (2.19), (2.28) and (2.29) yields
on simplification values given in equations (1.21)–(1.24).
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Appendix

A.1. Particular casesn = 1, 2, 3 and 4

The relation between theG-functions and thegn(y) are given in equations (1.1)–(1.4). For
n = 1 and 2, equations (4.2) and (4.4) yield

g1(y) = 1√
π

e−y
2

(A.1)

g2(y) = 4

π
[|y|K1(2|y|)− yK0(2|y|)]. (A.2)

For n = 3 andn = 4 the expressions of theG-functions are not found in the literature
and one has to calculate the residues at the poles as explained in section 4. As the order of
any pole is not greater than 3 or 4, the calculation is not prohibitive. The relevant results
are

G
3,0
0,3(y

2|0, 1, 1) = 1+ 1

2

∞∑
j=1

(−)j j2y2j

j !2

×
{[

2 ln |y| + 3γ + 2

j
− 3S1(j)

]2

+ π
2

2
− 2

j2
+ 3S2(j)

}
(A.3)
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G
4,0
0,4(y

2|0, 1, 1, 2) = 1− y
2

2

[
(2 ln |y| + 4γ − 1)2+ 2π2

3
+ 1

]
−1

6

∞∑
j=2

j3(j − 1)y2j

j !4

{[
2 ln |y| + 4γ + 3

j
+ 1

j − 1
− 4S1(j)

]3

+3

[
2 ln |y| + 4γ + 3

j
+ 1

j − 1
− 4S1(j)

]
×
[

2π2

3
− 3

j2
− 1

(j − 1)2
+ 4S2(j)

]
+ 8ζ(3)+ 6

j3
+ 2

(j − 1)3
− 8S3(j)

}
(A.4)

G
4,0
0,4(y

2| 12, 1
2,

3
2,

3
2) = −(2 ln |y| + 4γ )|y| − 1

6

∞∑
j=1

j2|y|2j+1

j !4

×
{[

2 ln |y| + 4γ + 2

j
− 4S1(j)

]3

+ 3

[
2 ln |y| + 4γ + 2

j
− 4S1(j)

]
×
[

2π2

3
− 2

j2
+ 4S2(j)

]
+ 8ζ(3)+ 4

j3
− 8S3(j)

}
(A.5)

where

Sp(j) :=
j∑
k=1

k−p (A.6)

andζ(3) is the Riemann zeta function

ζ(k) :=
∞∑
j=1

1

jk
(A.7)

so that one has

g3(y) = 4

π3/2
G

3,0
0,3(y

2|0, 1, 1) (A.8)

g4(y) = 16

3π2
[G4,0

0,4(y
2|0, 1, 1, 2)+ sign(y)G4,0

0,4(y
2| 12, 1

2,
3
2,

3
2)]. (A.9)

The graphs ofgn(y) for n = 1, 2, 3 and 4 are plotted in figure 1. Note the shape of
these curves: forn odd gn(y) is an even function having a maximum aty = 0; while
g2(y) andg4(y) have their maxima respectively for a negative and a positive value ofy in
agreement with the sign of the momentM(2m, 1) as given by equation (1.23). We expect
this behaviour to be true for allg2m(y).

A.2. Calculation of a determinant

Consider then×n determinant det[0(s+ i+j ]i,j=0,...,n−1, with s some complex number. A
determinant is not changed if we add a constant multiple of a row to another row. Subtract
s + i − 1 times the(i − 1)th row from theith row successively fori = n− 1, n− 2, . . . ,1.
Thus theith row for 16 i 6 n− 1 changes to

0(s + i + j)− (s + i − 1)0(s + i + j − 1)

= 0(s + i + j − 1)[(s + i + j − 1)− (s + i − 1)] = j0(s + i + j − 1).

(A.10)
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Now the first columnj = 0 has only one non-zero element,0(s), in the (0, 0) place, the
j th column has a common factorj in the rows 16 i 6 n− 1, which can be taken out, and
the original(i, j) element is changed to0(s + i + j − 1). Thus

det[0(s + i + j)]i,j=0,1,...,n−1 = 0(s)(n− 1)! det[0(s + i + j − 1)]i,j=1,...,n−1

= 0(s)(n− 1)! det[0(s + i + j + 1)]i,j=0,...,n−2. (A.11)

A recurrence onn now gives

det[0(s + i + j)]i,j=0,...,n−1 =
n−1∏
j=0

j !0(s + j). (A.12)

A.3. Gaussian symplectic and Gaussian orthogonal ensembles

The probability density for the eigenvalues of a matrix taken from the Gaussian symplectic
or Gaussian orthogonal ensemble is known to be [1]

Fβ(x) = Cnβ exp

(
−

n∑
j=1

x2
j

)
|1(x)|β β = 4 or 1. (A.13)

The Mellin transforms of the even and odd parts of the probability densitygnβ(y) of its
determinanty = x1 . . . xn can again be considered

M±nβ(s) :=
∫ ∞

0
ys−1g±nβ(y) dy (A.14)

= 1
2

∫ ∞
−∞

Fβ(x)|x1 . . . xn|s−1ε±(x1 . . . xn) dx1 . . .dxn (A.15)

with ε+(x) = 1 andε−(x) = sign(x).
Whenβ = 4, 14(x) can be expressed as a confluent polynomial alternant [11]

14(x) = det[Pi−1(xj ), P
′
i−1(xj )] i=1,...,2n

j=1,...,n
(A.16)

with arbitrary monic polynomialsPi(x). Then an expansion similar to equation (2.7) gives

M±n4(s) = 1
2Cn4 2−n

∑
(i)

n∏
k=1

∫ ∞
−∞

[Pi2k−1(xk)P
′
i2k
(xk)− P ′i2k−1

(xk)Pi2k (xk)]

×e−x
2
k |xk|s−1ε±(xk) dxk (A.17)

= 1
2Cn4 n! pf [8±ij (4)]i,j=0,1,...,2n−1 (A.18)

where

8±ij (4) :=
∫ ∞
−∞

e−x
2|x|s−1ε±(x)[Pi(x)P ′j (x)− P ′i (x)Pj (x)] dx. (A.19)

ChoosingPi(x) = xi , one sees that

8+ij (4) =

 (j − i)0
(
i + j + s − 1

2

)
i + j odd

0 i + j even
Res > 0 (A.20)

8−ij (4) =

 (j − i)0
(
i + j + s − 1

2

)
i + j even

0 i + j odd
Res > 0. (A.21)
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The alternate elements of the matrices [8±ij ]i,j=0,1,...,2n−1 are zero and they can be collected
together by a rearrangement of the rows and columns without changing the determinant.
Thus one finds that

M+n4(s) =
1

2
Cn4n! det

[
(2j − 2i + 1)0

(
i + j + s

2

)]
i,j=0,...,n−1

(A.22)

M−n4(s) =
1

2
(−1)n/2Cn4n! pf

[
(2j − 2i)0

(
i + j + s − 1

2

)]
i,j=0,1,...,n−1

× pf

[
(2j − 2i)0

(
i + j + s + 1

2

)]
i,j=0,1,...,n−1

n even (A.23)

M−n4(s) = 0 n odd. (A.24)

We did not succeed in finding a compact expression for these determinants valid for general
n so as to find their inverse Mellin transforms.

When β = 1, one can integrate over alternate variablesx1, x3, x5, . . . , for example,
to overcome the inconvenience of the absolute value sign of1(x) in the integrand. Thus
M±n1(s) can again be expressed as a determinant or a Pfaffian depending on the parity of
n. For example, whenn is even,

M±n1(s) = 1
2Cn1n! det[8±2i,2j+1(1)]i,j=0,1,...,n/2−1 (A.25)

where

8±2i,2j+1(1) := 2
∫
−∞<x6y<∞

|xy|s−1x2iy2j+1e−x
2−y2

ε±(xy) dx dy. (A.26)

Finding a general expression for these determinants or Pfaffians to study their inverse Mellin
transforms is more difficult.

A.4. Complex matrices

If we consider the ensemble of complex matrices, without the Hermitian property, the real
and imaginary parts of each matrix element being an independent Gaussian random variable,
then the probability density of its complex eigenvaluesz := {zj = xj + iyj , 16 j 6 n}, is
known [12] forn = 1, 2, . . .

Fc(z) = Kc exp

(
−

n∑
j=1

|zj |2
)
1(z)1(z∗) K−1

c := πn
n∏
j=1

j !. (A.27)

To find the probability density

gc,n(ξ) :=
∫
F(z)δ(ξ − z1 . . . zn)

n∏
j=1

dxj dyj (A.28)

of the determinantξ := reiθ = z1 . . . zn, one may use the Fourier series

gc,n(ξ) =
∞∑

m=−∞
am(r)e

imθ am(r) = 1

2π

∫ 2π

0
gc,n(re

iθ )e−imθ dθ. (A.29)

The Mellin transformAm(s) of am(r) is

Am(s) :=
∫ ∞

0
rs−1am(r) dr

= 1

2π

∫ ∞
0

∫ 2π

0
[gc,n(re

iθ )rs−2e−imθ ]r dr dθ
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= 1

2π

∫
gc,n(ξ)|ξ |s−2e−im argξ dξ

= 1

2π

∫
F(z)

n∏
j=1

[|zj |s−2 exp(−im argzj ) dxj dyj ]. (A.30)

The above expression is again the average value of a function8(z) = ∏n
j=1 φ(zj ). Then,

the method of section 2 gives

Am(s) = 1

2π
Kc n! det

[ ∫
e−|z|

2
zj z∗k|z|s−2 exp(−im argz) dx dy

]
j,k=0,1,...,n−1

= δm,0Kcn!
n−1∏
j=0

0
(
j + s

2

)
. (A.31)

This shows thatam(r) = 0 for m 6= 0, anda0(r) is a MeijerG-function,

gc,n(ξ) =
(
π

n−1∏
j=0

j !

)−1

G
n,0
0,n(r

2|0, 1, . . . , n− 1). (A.32)

For n = 1 and 2 this gives for example, using equations (4.2) and (4.3),

gc,1(ξ) = 1

π
G

1,0
0,1(r

2|0) = 1

π
e−r

2
(A.33)

gc,2(ξ) = 1

π
G

2,0
0,2(r

2|0, 1) = 2

π
rK1(2r) (A.34)

which can also be verified by a direct calculation.

A.5. Quaternion real matrices

If we consider the ensemble of quaternion real matrices, without the self-dual property, the
four real components of each (quaternion real) matrix element being independent Gaussian
random variables, then the eigenvalues are complex,z := {zj = xj + iyj , 1 6 j 6 n}, and
their probability density is known [15] forn = 1, 2, . . .

FQ(z) = KQ exp

(
−

n∑
j=1

|zj |2
) n∏
j=1

|zj − z∗j |2
∏

16j<k6n
|zj − zk|2|zj − z∗k |2 (A.35)

K−1
Q := n!(2π)n

n∏
j=1

(2j − 1)!. (A.36)

To find the probability density

gq,n(ξ) :=
∫
FQ(z)δ(ξ − z1 . . . zn)

n∏
j=1

dxj dyj (A.37)

of the determinantξ := reiθ = z1 . . . zn, one may use, as in appendix A.4, the Fourier series

gq,n(ξ) =
∞∑

m=−∞
am(r)e

imθ am(r) = 1

2π

∫ 2π

0
gq,n(re

iθ )e−imθ dθ. (A.38)

The Mellin transformAm(s) of am(r) is

Am(s) :=
∫ ∞

0
rs−1am(r) dr



5390 M L Mehta and J-M Normand

= 1

2π

∫ ∞
0

∫ 2π

0
[gq,n(re

iθ )rs−2e−imθ ]r dr dθ

= 1

2π

∫
gq,n(ξ)|ξ |s−2e−im argξ dξ

= 1

2π

∫
FQ(z)

n∏
j=1

[|zj |s−2 exp(−im argzj ) dxj dyj ]

= 1

2π
KQ

∫
det[zkj , z

∗k
j ] j=1,2,...,n

k=0,1,...,2n−1
(A.39)

×
n∏
j=1

[(zj − z∗j )e−|z|
2|zj |s−2 exp(−im argzj ) dxj dyj ] (A.40)

where det[zkj , z
∗k
j ] denotes a 2n× 2n determinant whose(2j − 1)th column consists of the

successive powers ofzj and whose 2j th column consists of the successive powers ofz∗j ,
for j = 1, 2, . . . , n.

Expression (A.40) is again the average value of a function8(z) = ∏n
j=1 φ(zj ), the

weight being a determinant containing each variable in two columns. An expansion similar
to equation (2.7) then gives

Am(s) = 1

2π
KQn! pf[Ajk]j,k=0,1,...,2n−1 (A.41)

with

Ajk :=
∫
(zj z∗k − z∗j zk)(z− z∗)e−|z|2|z|s−2 exp(−im argz) dx dy

=
∫ ∞

0
rj+k+s−1e−r

2
r dr

∫ 2π

0
(ei(j−k)θ − e−i(j−k)θ )(eiθ − e−iθ )e−imθ dθ

= π0
(
j + k + s + 1

2

)
[δj−k,m−1− δj−k,m+1+ δj−k,−m−1− δj−k,−m+1].

(A.42)

If |m| > n + 1, thenAn,k = 0 for k = 0, 1, . . . ,2n − 1, so that pf[Ajk] = 0 = Am(s) and
am(r) = 0. Also a careful examination shows thatAm(s) = 0 for n andm both odd, while
for any n

A0(s) = 1

2π
KQ n!(2π)n

n−1∏
j=0

0

(
s + 2j + 1

2

)
(A.43)

An+1(s) = A−n−1(s) = 1

2π
KQ n!(−π)n

n−1∏
j=0

0

(
n+ s + 2j + 1

2

)
(A.44)

showing thatan+1(r) = a−n−1(r) 6= 0. Actually am(r) = a−m(r), and in general,am(r) 6= 0
for |m| 6 n+ 1, so thatgq,n(ξ) is real.Am(s) can be calculated with increasing difficulty
as(n+ 1− |m|) increases.

References

[1] See for example, Mehta M L 1991Random Matrices(New York: Academic)
[2] Wigner E P 1965 Distribution laws for the roots of a random Hermitian matrixStatistical Theories of Spectra:

Fluctuationsed C E Porter (New York: Academic) p 459



Determinant of a random Hermitian matrix 5391

[3] Mahoux G, Mehta M L and Normand J-M 1998 Matrices coupled in a chain: II. Spacing functionsJ. Phys.
A: Math. Gen.31 4457

[4] Luke Y L 1969 The Special Functions and Their Applicationsvol 1 (New York: Academic) ch 5
Bateman H 1953Higher Transcendental Functionsvol 1 (New York: McGraw-Hill) 5.3–5.6
Gradsteyn I S and Rizhik I M 1965 Tables of Integrals Series and Products(New York: Academic) 9.3

[5] Bateman H 1953Higher Transcendental Functionsvol 1 (New York: McGraw-Hill) 1.7
Abramowitch M and Stegun I A 1965 Handbook of Mathematical Functions(New York: Dover) 6.3

[6] Widder D V 1971 Transform Theory(New York: Academic) 5.7 corollary 7.3a p 109
[7] Bateman H 1954Integral Transformsvol 1 (New York: McGraw-Hill) 6.9 (14)
[8] Luke Y L 1969 The Special Functions and Their Applicationsvol 1 (New York: Academic) 6.5 (8)

Bateman H 1953Higher Transcendental Functionsvol 1 (New York: McGraw-Hill) 5.6 (4)
[9] Bateman H 1953Higher Transcendental Functionsvol 2 (New York: McGraw-Hill) 7.2.2

Abramowitch M and Stegun I A 1965 Handbook of Mathematical Functions(New York: Dover) 9.6
[10] Luke Y L 1969 The Special Functions and Their Applicationsvol 1 (New York: Academic) 5.7 theorem 5

(12)–(15)
[11] See for example, Mehta M L 1989Matrix Theory(Les Ulis: Editions de Physique) ch 7.1
[12] See for example, Mehta M L 1991Random Matrices(New York: Academic) 15.1 (15.1.10) and (15.1.17)
[13] Girko V L 1990 Theory of Random Determinants (Mathematics and Its Applications, Soviet Series 45)

(Dordrecht: Kluwer Academic)
[14] Nyquist H, Rice S O and Riordan J 1954 The distribution of random determinantsQ. Appl. Math.12 97–104
[15] See for example, Mehta M L 1991Random Matrices(New York: Academic) 15.2 (15.2.10) and (15.2.15)


