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Abstract. The probability density function for the determinant ofia« n random Hermitian
matrix taken from the Gaussian unitary ensemble is calculated. It is found to be a Keijer
function or a linear combination of two Meij&F-functions, depending on the parity af The
integer moments of this probability density are also given.

1. Introduction and results

Three ensembles of random matrices have been studied extensively [1]. These are the
ensembles of matriceg defined by the probability densitx exp(— tr A%) of the matrix
elements. The matrid is real symmetric for the Gaussian orthogonal ensemble, it is
complex Hermitian for the Gaussian unitary ensemble and it is quaternion self-dual for the
Gaussian symplectic ensemble. The question concerning the distribution of the determinant
was asked only once by Wigner [2], who gave the mean value of the logarithm efxie
determinant §;; + ¢;¢] in the limit n — oo with g (¢;x = &, if real andej, = &5, if
complex) of order 1n. For a random matrix taken from the Gaussian unitary ensemble we
shall calculate the probability density of its determinant. The same question concerning the
other two ensembles (orthogonal and symplectic) remains open.

Our method consists of calculating explicitly, in section 2 the Mellin transforms of the
even and odd parts of the probability densigy(y), equation (3.1), of the determinant
y = xix2...x, wherex, ..., x, are the eigenvalues of the random matrix. For this
calculation we apply a method used recently [3] to compute the expectation value of any
function of eigenvalues of the forl’ﬁ[’;:m(xj). We then use the inverse Mellin transform
in section 3. Our main results for positive integarare as follows. They have a different
form accordingly as: is odd or even, and for clarity we present them separately.

82n+1(») = N2wi1Gan 03210, 1,1, 2,2, ... m, m) (1.1)
g2n(y) = N2u[G550(»%10,1,1,2,2, ..., m — 1, m —1,m)
+(=D" S|gn(y)G§"g,?(y 12,383 . m—3m— 1) (1.2)

Nopoy = 27@1 0 ,(m+1/2>1—[ i / 1 (1.3)
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oy = 211 7m"11_[ /H jl. (1.4)

Here G’éjg is a Meijer G-function [4].
For y = 0, one obtains in section 4,

m 2m
g2n+1(0) = 2" g~y H j? / (m!2 [1 j!) (1.5)

: j:m
gom (0) = 2@ Vg ]_[ 1'3/ ]_[ J! (1.6)
j=m—1
g2m+1(0) =0 a.7)
85, (0) = (=)™ x oo0. (1.8)
In the vicinity of y = 0, one has the expansion gf(y) as

1

=—[1-y>+0u* 1.9

g1(y) ﬁ[ y©+00M] (1.9)
2

g2(y) = —[L+2yI |yl +2yy +2y%In|y| + 2y — Dy* + OO I |yD] (1.10)

C(m 1)‘2

2y
gon(y) = me(O){l— D" oD [In Iyl +7 - Z w(n}

2y? 2 / / 313
—m(m [yl +a, In|y| + B,) + O@(”In Iyl)} (1.12)
where
m—1
=3y —1-2% ¥ () (113)
j=1
m—2
a, =3y —1—ym—1-2> ¥ (1.14)
j=1
il , 72 =
,3m=21[04m+1+7+221/f0)} (1.15)
7 1 7
B = 4|:052+1+ +lﬂ(m—1)+2;1//(J):| (1.16)

In these equationsy (z) := I''(z)/'(z) is the psi function [5] and)’ is its derivative,
y = —y¥ (1) ~ 0.5772 is the Euler constant anid(j) and/’(j) for j < 0 are interpreted
to be zero.

For large|y|, the asymptotic expressions fgx(y) are derived in section 5.

m 2m
— . . _ 512/ (2m+1 2
gant1(y) = 22"V (2m + 1)] l/2<1_[]!/ 1_[]!>e @utDIyEIETD | 2m2/@n1)

2
(m+1) _2 _
14— 1= /(2m+1) 0] 4/(2m+1) 1 1.17
[ + 6(2m+1)| vl + Oyl ) Iyl > (1.17)
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Figure 1. Graphs of the functiong, (y) forn =1, 2, 3 and 4.

1/2 . Um
gan () =277 () < / )ezmy'” " YE[L 4 Oy ™M) (118
j=m

if either m is odd andy > 1, orm is even andy « —1

m—1
gom(y) = 22" (mm)~ 1/2( H / )e—2m|y1/m|y|m—1+l/(2m)
_ﬂ1

» 1+4m —2m?+1
48m

if either m is even andy > 1, orm is odd andy « —1.

The particular cases= 1, 2, 3 and 4 are studied in appendix A.1 and the corresponding
functionsg, (y) are plotted in figure 1.

The moments of the probability densigy(y) forg =1,2,...

Iy~ + O(|y|—2/'">} (1.19)

M(n,q) 2=/ gn(y)y?dy (1.20)
are deduced in section 6
M@2m+1,2p+1) =0 (1.21)
2
FTp+3) & |(T+i+3)
M@2m +1,2p) = 1.22
R Q[ rG+3) (1.22)
M@m,2p+1) = (=1)" rQ ﬁ NETES N (1.23)
’ Tm+3) | TG+3) '

F(p+m+Hrd) "’1[F<p+j+%>}2 (120

M@2m, 2p) =
(. 2p) F<p+%)r(m+%>,1:!, TG+

In appendix A.3 we make some remarks concerning the probability density of the
determinant of a matrix taken from the Gaussian symplectic and Gaussian orthogonal

ensembles, in appendix A.4 concerning complex matrices and in appendix A.5 concerning
guaternion real matrices.
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2. Calculation of Mellin transforms

For p Hermitian n x n matrices coupled in a chain we recently used [3] a method
of computing the average of a function of the forfl_; [T;_; #.(xu), where x,

k = 1,...,n, are the eigenvalues of theth matrix in the chain. We took,(x) to

be 1- x.(x), wherey, is the characteristic function of the intervg] and obtained the
probability that the interval,, does not contain any eigenvalue of théh matrix in the
chain. We now apply the same method to compute the Mellin transforms of the even and
odd parts

gr () = 3[8.() % gu(—)] (2.1)
of the probability density, (y) of the determinant of one matrix. The probability density of
the eigenvalues: := {x1, x2, ..., x,,} of a random matrix taken from the Gaussian unitary
ensemble fom =1, 2, ... is [1]
F(zx) = C, exp( - ij?) A?(z) (2.2)
j=1
1 n=1
Ax) = 1_[ (X — xj) n=23, ... (2.3)
1< j<k<n
C, 1= 2"n=D/2 /2 / [T (2.4)
j=1

Recall that a polynomial is called monic if the coefficient of its highest power is one. We
write A(x) as a polynomial alternant,

A?(x) = (detlxi )% = det[P,_1(x;)] det[Q;_1(x))]i j=1....n (2.5)

whereP; (x) and Q; (x) are any monic polynomials of degréeeExpanding the determinants
one has

A@) =) "> 0o (j))Py(x1)... P, (x,) Q) (x1) ... O}, (x,) (2.6)
(ORN0))

whereo (i) is the sign of the permutatioi) := (Olrl' ''''' ”jl
permutationgi), and similarly for the permutationg).

If ®(x) = ]'[;.’zlqb(xj), then the average value df(x) is

), the sum(i) is over all then!

(<I>(a:)):=/ / F(z)®(z)dxy . .. dx,

=G,y Y o] ] / Py, (x) Q) (x)€ ¥ (xr) dlry
@ O k=1Y 7%

=Co Y Y oo (NPijy .. i,
(ORN0))

= Cyn!det[®; ;]; j=0,..n-1 (2.7)

where

;. 1=/ Pi(x)Q;(x)€™ ¢ (x) dx. (2.8)
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The determinant of the matrix ig = x1...x, with a probability densityg,(y). The
Mellin transform of the even part of,(y) is

Mo = [Ty oy 2.9)
/ / F(x)|x1...x," Lxy. .. dx, (2.10)
(xa. . x, Y (2.11)
= —Cnn'det[CDlj],J 0. (2.12)
where with¢ (x) = |x|*~? in equation (2.8), one has
o = /OC P(x)Q;(x)e " [x|*dx. (2.13)

We can choos@; (x) and Q;(x) as any monic polynomials of degréeThey can be chosen
to make the matrlxq> ] diagonal. However, let us takg (x) = Q;(x) = x'. Then

o
L 2
o ::/ x| x s le™ dx Res > 0

LJ
00

(2.14)

| Tls+i+/2] i+ j even
“]o i+ j odd.

The alternate elements of the< n determinantt{bfj] being zero, we can rearrange its rows
and columns so as to collect the zero elements separate from the non-zero elements. Thus

det[®; ]i j=0..n—1 = det[®3; 5 1i j=o.. [n-1)/21 dEUPS, 1 5i11)ij=0....[(-2)/2] (2.15)

where [¢] denotes the largest integer less than or equal tt is straightforward to evaluate
the determlnantscﬁ 2]] and [@3; ;. 2i+1] (cf appendix A.2)

[(n+1)/2]

S
ar (S L
det[®3; )i, j=0..[n-1/2) = ,11 []-F (2 +J)] (2.16)
[n/2] s
4t 1 im0 = [ | [ (544 +1)]. (217)
j=0
Putting in the constants, we find
M (s) = —N ]_[ ( +b})  Res>0 (2.18)
where
=[j/2] i=12.... (2.19)
Note that, from the normalization @f,(y), one has
1= [ amdy=2[ gma (2.20)
—00 0
therefore

S=T]rG+sH. (2.21)
j=1
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Similarly the Mellin transform of the odd part @f,(y) is

M= [y g o0y (222)
0
= %/ / F(x) Sign(xy ... x,)|x1. .. x,[* Ty ... dx, (2.23)
= 3(sign(xz...x,)x1. .. x, ) (2.24)
= 3C,n!det[®; ]; j—o... (2.25)
where with¢ (x) = sign(x)|x|*~! in equation (2.8), one has
D, ::/ X' Sign(x)|x|5_1e_xzdx Res > 0
r Lo 1 odd
:{ [s+i+)/2] l'-l-J.O (2.26)
0 i+ j even.

Inthen xn determinantt{b;j], the zero and non-zero elements can again be separated and
the two resulting determinants computed. One has

det[d; ] = (—=1)"/*{det{® 5, 4] j=0.... w21}

n/2—1 1 2
_ (— 1)n/2 l_[ |: < __|_J)i| n even 2.27)

0 n odd.
So that the Mellin transform of the odd part gf(y) is

(—1)"/2%1\7” ]‘!r (% n b_;) n even
J=

0 n odd

M, (s) = Res >0 (2.28)

where

by =[(j - 1/2]1+3 ji=12.... (2.29)
3. Inverse Mellin transforms
The probability density, (y) is defined using the Dirac delta function by

2:(y) :=f / F(@)§(y — x1...x,)dxy...dx,. (3.2)

From equation (2.2) an integration over gives

1
gn(y) f / exp[ Zx - Xp— 1)2] |)C1 xn—l'
2
N2
xH(xj A 1) 1_[ (xi — x;)°. 3.2)

1<i<j<n—1

The integrand in the above equation is the product of an exponential term by a polynomial
in y,x1,...,x,_1 and divided bylxy ...x,_1/*~1. When anyx; goes either to infinity or
to zero the integrand has a decreasing Gaussian factor. It follows that the integral (3.2) is
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convergent. Furthermore, the integrand is clearly a continuous function dfherefore,
from equation (3.1) the probability densigy(y) is a continuous bounded function for any
real y. From equation (2.1) the even and odd pastsy) of g,(y) are also bounded and
continuous. Their Mellin transforma4(s) are analytic in the right half complexplane
Res > 0. Thus they are uniquely determined by the inverse Mellin transforovgf(s)
[6].

Looking at the tables of integral transforms [7] one finds that the Mellin transform of a
Meijer G-function is the ratio of products of gamma functions. In particular [7]

oo n
fo G (xlby, .. by dr = [ [T(s +by). (3.3)
j=1
By a change ofc into y? ands into s/2, this can be written as
[e’e} 0 n s
2/ ¥ G0 b dy = [T (5 + ). (3.4)
0 ’ =1 2

Comparing this last equation with equations (2.18) and (2.28), one obtains>d

& () = NuGl(2by . ... b (3.5)
(—1"2N,Gyo(y?Iby . ..., by) n even
0 n odd.

Taking into account the symmetry propertiesggf(y), one obtains for all rea} the results
announced in equations (1.1) and (1.2).

g, () = { (3.6)

4. Computation of the G-functions and behaviour near the origin

The G-functions have convergent series expansions which are convenient for their numerical
evaluation. By definition [4]

1 n
ng,?(y2|bi,-~~,bf) = E/ﬁyz"nl“(bf—s)ds. (4.1)
j=1

The contourL goes from—ico to +ioco so that all poles ol“(bf —s) lie to the right of
the path. It can be closed in the right half compleglane, so that th&-function is the
negative of the sum of residues at its poles which from equations (2.19) and (2.29) all lie
on the non-negative real axis.

Whenn = 1, Gg3(y?|0) has simple poles gt= 0, 1, ... with the residug—1)/+1y?/ /!
and

G52(%0) = 7, (4.2)

Forn = 2, one can either calculate the residues at the poles or consult the literature [8]
to find that

G552 by, bp) = 2|y[" 2 Ky, (21y]) 4.3)
with K, the modified Bessel function [9]. Thus
G55(»%10,1) = 2|y|K1(2ly]) G523, 1) = 2y Ko(2ly)). (4.4)

Forn > 2, in the case of thé¢b;'}, s = 0 is a simple pole with residue []/_;(b;)";
s = 1 is a pole of order 2 or 3 according as= 2 orn > 3; s = 2 is a pole of order
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min(n, 5); s = 3 is a pole of order mifx, 7); and so on. It is straightforward to calculate
the residue at = j, by writing

Fk—s)=[k—s)k+1—5)...( —)] TG +1-ys) 0<k<j. (4.5)
The result is a series

min(2j,n)

o0
GE2OHE o ob) =1+ Y cutm sy [ TT - o @)
j=1 k=1

wherec, (n, j, In|y|) is a polynomial of order at moat— 1 in In|y|. Similarly, in the case
of {bj},s=j+ % is a pole of order mi(, 2j + 2), calculation of the residue is again
straightforward, and

min(2j,n)

o0
Gg;,?(yzw—,...,bn)=Zc_<n,j,ln|y|>|y|2”l/ [T G+3-8 4.7)
j=0 k=1

wherec_(n, j,In|y|) is again a polynomial of order at most— 1 in In|y|. For largej,
owing to the presence af factorials in the denominator, the convergence of the series (4.6)
or (4.7) is better, the larger is.

As an illustration we compute in appendix A.1 the functi@@ﬁ(yzwi, ..., bE)) for
n = 3 andn = 4. We also give the expressions gf(y) for n = 1, 2, 3 and 4, and plot
their graphs in figure 1.

Nears = O the poles atk = 0 ands = 1 (resp. s = %) are dominant for the case
{b;’} (resp. {bj‘}). Using equations (1.1) and (1.2) we find the expansions (1.10)—(1.12) for
g,(y) near the origin witm = 2,3, ....

5. G-functions for large values of the variable

When|x| — oo, |argx| < (n + D — 8, § > 0, we have the asymptotic expansion [10]
Gel(x|by, ... bE) = @m) " Y20 exp(—na V" L+ cEx 7" + O] (5.1)
where

1/ n—1
oF == bt — 5.2
; (Zl 2) (5.2)

S S/SEY  Sl pt (5.3)
T T\ 240 '
j=1 j=1
From the expressions of tt‘h;f, equation (2.19), one has farodd,
—1)2
eij = u (5.4)
dn
(n?—1)?
e 5.5
T (55)
Settingn = 2m + 1, one obtains the asymptotic expression (1.17).
Similarly, for n even, equations (2.19) and (2.29) give
2_2n+2
gr_l—ate (5.6)
4n
4_2m?+4
e = % (5.7)
i _n
—c, = =. 5.8
o=t (5.8)
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Settingn = 2m, one obtains the asymptotic expressions (1.18) and (1.19) according to the
value of (—1)" sign(y).

6. Integer moments ofg,, (y)

The moments of the probability densigy,(y) can be expressed in terms of the Mellin
transformsME as follows. Forg = 0,1, ...

M(n,q) = [1+(—1)q]f0 g&r(y)ytdy +[1 - (—1)q]/0 g, )y?dy

=14+ DIMig+D +[1 - (DM, (g +1). (6.1)

ReplacingME (g + 1) by their expressions, equations (2.18), (2.19), (2.28) and (2.29) yields
on simplification values given in equations (1.21)—(1.24).
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Appendix

A.l. Particular cases =1, 2, 3 and 4

The relation between th€-functions and the, (y) are given in equations (1.1)—(1.4). For
n =1 and 2, equations (4.2) and (4.4) yield

1 .

g1(y) = —ﬁe*y (A1)
4

82(y) = ;[Ilel(Zlyl) — yKo(2lyD]. (A.2)

Forn = 3 andn = 4 the expressions of thé-functions are not found in the literature
and one has to calculate the residues at the poles as explained in section 4. As the order of
any pole is not greater than 3 or 4, the calculation is not prohibitive. The relevant results
are

1 Z“’ ()%
30,2 _ <
GO,S(y |0? 17 1) - 1 + 2 = ]|2

2 17 72 2 ,
x 2|n|y|+3y+;—3S1(]) +7—j_2+352(j) (A.3)
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40, 2 y? , 27?
G0:4(y 0,1,1,2)=1— 5 |:(2In|y|+4y -1 +?+1:|
1S 3 — Dy 3, 1 Nk
2N L 22 o) dy + =+ —— — 4§
6; o NIyl +4y + =+ ——7 = 4510)
3 1 .
3 [2|n|y| by Syt 4510)}
J J-1
272 3 1 6 2
s S T L AS()|+8()+ =+ ———— —8S3(j
X[ 3 2 (j_1)2+ 2(1)}+ §()+j3+(j_l)3 3(1)}
(A.49)
40,21 1 3 3 J |y|2]+1
G155 3,5, 3) = —(2In|y| + 4y)|y| — Z
2 3 2 ,
2|n|y|+4y+— —48:1(j)| +3 2|n|y|+4y+;—451(])
4
[ - J— + 452(])] +82(3) + - - 853(])} (A.5)
where
j
Sp(j) =Y kP (A.6)
k=1
and¢(3) is the Riemann zeta function
> 1
cky:=) — (A7)
=1/
so that one has
4
8300) = —5;3Go30°10, 1, 1) (A.8)
ga(y) = ﬁ[G 910, 1,1,2) + sign(») G a3, 3. 2, D)1 (A.9)

The graphs ofg,(y) for n = 1, 2, 3 and 4 are plotted in figure 1. Note the shape of
these curves: for odd g,(y) is an even function having a maximum at= 0; while
g2(y) and g4(y) have their maxima respectively for a negative and a positive valyeirf
agreement with the sign of the momeWit(2m, 1) as given by equation (1.23). We expect
this behaviour to be true for afl,, ().

A.2. Calculation of a determinant

Consider the: x n determinant deff (s +i + j]; j=o,... »—1, With s some complex number. A
determinant is not changed if we add a constant multiple of a row to another row. Subtract
s +i — 1 times the(i — 1)th row from theith row successively for=n—-1,n—-2,..., 1.

Thus theith row for 1< i < n — 1 changes to

F's+i+j)—@6+i—DI's+i+j—-121
=TG+i+j-D[6c+i+j-D—(G+i—-D]=jT+i+j—1.
(A.10)
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Now the first columnj = 0 has only one non-zero elemeit(s), in the (0, 0) place, the
jth column has a common factgrin the rows 1< i < n — 1, which can be taken out, and
the original(i, j) element is changed t6(s +i + j — 1). Thus
detll'(s +i + j)]ij=01..n-1 =T(s)(n = DVdetl'(s +i +j — D]ij=1...n-1

=T(s)(n— 1! det[F(S +i4+j+ 1)],',]':0 ,,,,, n_2. (A.ll)

A recurrence om now gives

n—1
detl"(s + i + Nij=o..n-1= | [J1TG + /). (A.12)
Jj=0

A.3. Gaussian symplectic and Gaussian orthogonal ensembles

The probability density for the eigenvalues of a matrix taken from the Gaussian symplectic
or Gaussian orthogonal ensemble is known to be [1]

n

Fg(x) = Cpp exp( — fo> |A(z)|? B=4orl (A.13)

=1

The Mellin transforms of the even and odd parts of the probability dengjyy) of its
determinanty = x; ...x, can again be considered

My (s) = /0 Y e (v) dy (A.14)

2

= l/ Fg(x)|x1. .. x,) "2 (xq ... x) dxg ... vy, (A.15)

with e*(x) = 1 ande™ (x) = sign(x).
When g = 4, A*(x) can be expressed as a confluent polynomial alternant [11]

ANx) = det[P,_1(x;), P/_4(x))] =120 (A.16)
J=

with arbitrary monic polynomials; (x). Then an expansion similar to equation (2.7) gives

M) =3Cu 2> ] / w[Pm_mxk)P[;k () — Pl (x0) Piy (x0)]

() k=1
x &% x| et (g ) iy (A.17)
= %C;m n! pf [¢$(4)]i,j:0,1 ..... -1 (A.18)
where
P} (4) = / e‘xz|x|“‘_18i(x)[P,-(x)Pj’(x) — P/(x)P;(x)] dx. (A.19)

ChoosingP; (x) = x', one sees that

o i+j+s— 1) L
Y o (A i + j odd
(4 = G0 ( 2 / Res > 0 (A.20)
0 i+ jeven
PR
(j—i)r <i> i+ even
b (4) = 2 Res > 0. (A.21)
0 i +j odd
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The alternate elements of the matricez;;ﬂi,j:ql,___,zn_l are zero and they can be collected
together by a rearrangement of the rows and columns without changing the determinant.
Thus one finds that

1 S
+ _ = | . o . . e
M (s) 2Cn4n.det[(2] 2i + )T (z Y 2)]1-,,-:0 """ » (A.22)
- 1 /2 . . . . s—1
Mog(s) = 5(=1)"?Cantpt | 2j — 20T (i +j + ==
2 2 i j=0.1,..n—1
1
« pf [(2]' —2)T (i b4t >] n even (A.23)
2 i,j=0,1,..n—1
M, ,(5)=0 n odd (A.24)

We did not succeed in finding a compact expression for these determinants valid for general
n so as to find their inverse Mellin transforms.

When 8 = 1, one can integrate over alternate variablesxs, xs, ..., for example,
to overcome the inconvenience of the absolute value siga(af) in the integrand. Thus
/\/lffl(s) can again be expressed as a determinant or a Pfaffian depending on the parity of
n. For example, when is even,

M (s) = %Cnln! det[q)i'_2j+]_(1)]i,j:O,l,m,n/Z—l (A.25)

where

D3 2742(D) =2 f ey ey e e  (ry) dr dy. (A26)

00<XLY <00

Finding a general expression for these determinants or Pfaffians to study their inverse Mellin
transforms is more difficult.
A.4. Complex matrices

If we consider the ensemble of complex matrices, without the Hermitian property, the real
and imaginary parts of each matrix element being an independent Gaussian random variable,
then the probability density of its complex eigenvalues= {z; = x; +iy;, 1 < j <n}, is

known [12] forn =1, 2, ...

F.(z) = K, exp( -y |z,-|2)A(z)A(z*) K="t (A27)
j=1 j=1

To find the probability density

gen(®) = / F3E 2120 ] ] dy dy (A.28)
j=1
of the determinant :=ré’ = z;...z,, one may use the Fourier series
) ) 1 2 ) )
e (€) =m:Z_ooam<r>é'"9 an(r) = — /O gen(ré?)e™’ do. (A.29)

The Mellin transformA,, (s) of a,, (r) is

Am (S) = / rxilam(r) dr
0

1 oo 27 ) .
=5 f / [gen (réyr* 27" dr do
T Jo Jo
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1 s—2 —im argé
=50 gen ()& € d&
TT
1 L .
= EfF(z) H[|zj|s‘2exp(—|m argz;) dx; dy;]. (A.30)
j=1

The above expression is again the average value of a funétien = n?:1¢(Zj)- Then,
the method of section 2 gives '

1 )
An(s) = Z_KC n! det[/e‘z'zz-’z*klzls_2 exp(—im argz) dx dy}

g jk=0,1,...n—1
n—1
S
=8nokn! [T (j+=). (A.31)
fri+3)
This shows thaty, (r) = 0 for m # 0, andao(r) is a Meijer G-function,
n—1 -1
gen(®) = <n l_[j!> Ggo(r?l0,1,...,n — ). (A.32)
j=0
Forn = 1 and 2 this gives for example, using equations (4.2) and (4.3),
1 1
8e1(6) = G20 = —e” (A.33)
T T
1 2
ge2(6) = —Gg5(?10,1) = —rKi(2r) (A.34)

which can also be verified by a direct calculation.

A.5. Quaternion real matrices

If we consider the ensemble of quaternion real matrices, without the self-dual property, the
four real components of each (quaternion real) matrix element being independent Gaussian
random variables, then the eigenvalues are complex {z; = x; +1iy;, 1 < j < n}, and

their probability density is known [15] fot =1, 2, ...

FQ(Z) :KQ eXp<_Z|Zj|2>H|Zj—Z;F|2 1_[ |Zj —Zk|2|Zj —ZZ|2 (A.35)
j=1 j=1 1<j<k<n
Kot =nl(2m)" H(Zj — 1. (A.36)
j=1

To find the probability density

ggn(®) = / Fo@5E — 1.z ] | dy (A37)
j=1
of the determinant := ré? = z;...z,, one may use, as in appendix A.4, the Fourier series
0 ) 1 % ) .
_ mo _ O\ a—imb
Ge®©= 3 e a0 =g [ gaedhe e, (239

The Mellin transformA,, (s) of a,,(r) is

A, (s) :=/ r*a,,(r) dr
0
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1 00 2 ) .
= / / (80 (rd")r 26" o db
T Jo 0
1 .
= Z/gq,n(é)léI‘Y’ze""”arg‘S d&

1 L .
= Z f FQ(Z) H“Zj |S72 eXp(—Im arng) de dyj]
j=1

1
= —K, [ det*, z*] j—12..n A.39
21 Q/ oty 1 et (A-39)
X H[(Zj - z}‘)e"“zlzjlx_2 exp(—im argz;) dx; dy;] (A.40)
j=1

where detf*, zj"] denotes a 2 x 2n determinant whos€2; — 1)th column consists of the
successive powers af and whose 2th column consists of the successive powers of
forj=1,2,...,n.

Expression (A.40) is again the average value of a functiqe) = ]'[;’zlqb(zj), the
weight being a determinant containing each variable in two columns. An expansion similar
to equation (2.7) then gives

1
Ap(s) = EKQ”! PfLAji]jk=0.1,...20-1 (A.41)

with

Aji 1= / (@™%= 2725z — 2)e |22 exp(—im argz) dx dy

o0 21
— / rj+k+s—le—r2r dr_/ (el(J—k)9 _ e—u(J—k)e)(ée _ e—ue)e—ume do
0 0

i +k+s+1
=nl (%) [8i—km-1— 8j—km+1 + Sj—k,—m—1 — 8j—k—m+1]-
(A.42)

If I/m| >n+1,thenA,, =0fork=0,1,...,2n — 1, so that pfA;] = 0= A,(s) and
a,(r) = 0. Also a careful examination shows thdj, (s) = 0 for n andm both odd, while
for anyn

1 g 2j +1
Aols) = 5 Ko n'20)" [T (&) (A.43)

T =0 2

1 = +s54+2j+1
Avsa(s) = Aoa(s) = Ko nl(=)" [T (”Sf’

JT =0

) (A.44)

showing thaty, ,1(r) = a_,_1(r) # 0. Actuallya,,(r) = a_,,(r), and in generalg,, (r) # 0
for m| < n+ 1, so thatg, ,(¢) is real. A, (s) can be calculated with increasing difficulty
as(n + 1 — |m|) increases.
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